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Table 1

Exact Error Rates of the DMLB and the TDT Test
Statistics When the Critical Values (Corresponding
to ) Proposed by Huang and Jiang (1999)a = .0001
Are Used

n2 P(DMLB 1 17.38) P(TDT 1 15.14)

30 .0001544 .0000422
50 .0001585 .0000785
100 .0001475 .0000913
300 .0001269 .0001019
500 .0001237 .0000985
700 .0001220 .0001051
1,000 .0001158 .0000902

NOTE.—The DMLB critical value obviously is
anticonservative.
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The Disequilibrium Maximum-Likelihood–Binomial
Test Does Not Replace the Transmission/
Disequilibrium Test

To the Editor:
In a previous issue of the Journal, Huang and Jiang
(1999) introduced the disequilibrium maximum-likeli-
hood–binomial test (DMLB) for affected-sibship data.
The DMLB is supposed to combine the advantages of
the mean test (Blackwelder and Elston 1985) and the
transmission/disequilibrium test (TDT) (Terwilliger and
Ott 1992; Spielman et al. 1993), in that the DMLB per-
forms well when linkage disequilibrium (LD) is low and
has power higher than or equal to that of the TDT when
the LD ranges from moderate to strong. If this claim
was correct, the TDT would be obsolete. In this letter,
we show how to compute exact P values and exact crit-
ical values for the DMLB (and for the TDT), and we
show that, when these exact critical values are used, the
DMLB is never significantly more powerful than the
TDT when there is complete LD. The opposite is true:
the TDT is often significantly more powerful than the
DMLB. Even when LD is at 80% of its maximum, the
TDT still outperforms the DMLB when the marker- and
disease-allele frequencies are identical. The asymptotic
approximation used by Huang and Jiang (1999) can be
inaccurate. We show that their choice of the critical value
for the DMLB ( ) is often anticonservative—that is,cDMLB

it violates the false-positive rate—whereas their choice
of the critical value for the TDT ( ) tends to be overlycTDT

conservative. The exact critical values depend on the
number of heterozygous parents in the sample, and we
are making available (contact the corresponding author)
an SAS Institute (1990) program that computes exact
critical values. Huang and Jiang (1999) introduce DMLB
tests for two different cases of hypotheses. For the sake
of brevity, we will focus only on the more important
two-sided hypothesis, which is relevant when there is no
prior knowledge about which marker allele is in LD with
the disease. Let us give a brief description of the TDT
and the DMLB for families with two affected children.
Suppose that there are heterozygous parents inn B B2 1 2

the data set. Let denote the number of heterozygousn22

parents who transmitted allele to both children, letB1

denote the number of heterozygous parents whon21

transmitted to one child and to the other child,B B1 2

and let denote the number of heterozygous parentsn20

who transmitted to both children. Then the TDTB2

statistic is given by with an as-2TDT = [2 (n � n ) ] /n22 20 2

ymptotic distribution under the null hypothesis of no2x1

linkage. The score-statistic version of the DMLB is given
by

22(n � n )22 20 if n � n � n20 22 21n2

DMLB = .
2 2(n � n � n ) � 2(n � n )20 22 21 22 20{ if n � n 1 n20 22 21n2

Incidentally, we note that equals2[(n � n � n ) ] /n20 22 21 2

the mean test for these data. Huang and Jiang (1999)
show that, under the null hypothesis of no linkage, the
DMLB has the asymptotic distribution . They2 2.5x � .5x1 2

use this asymptotic distribution to compute the critical
value , corresponding to a false-positivec = 17.38DMLB

rate of . Similarly, under the null hypothesisa = .0001
of no linkage, the TDT has an asymptotic distribution,2x1

which can be used to show that, for the same false-
positive rate, the critical value of the TDT is given by

. These critical values are not ideal, as canc = 15.14TDT

be seen from table 1, which lists the exact error rates as
a function of the number of heterozygous parents .n2

Fortunately, one does not need to rely on asymptotic
approximations, since, under the null hypothesis, one
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Table 2

Exact Critical Values for the TDT and the DMLB Corresponding
to a, as a Function of n2

n2

EXACT VALUES AT a =

.0001 .001 .01 .05

c DMLB c TDT c DMLB c TDT c DMLB c TDT c DMLB c TDT

30 19.63 15.03 13.43 11.30 8.63 6.70 5.43 4.30
50 18.94 14.46 13.70 10.26 8.38 6.78 5.18 4.02
100 18.17 14.59 13.51 10.59 8.57 6.49 5.29 3.93
300 18.00 15.36 13.12 10.67 8.40 6.83 5.23 3.84

Table 3

Comparison of the Power of the DMLB with That of the TDT, When a = .0001

MODEL AND p (m)

POWER FOR dp =

1 .8 .5 .3

N TDT DMLB N TDT DMLB N TDT DMLB N TDT DMLB

Additive:
.2 (.2) 51 .82 .75 75 .81 .76 173 .80 .80 437 .80 .87
.5 (.5) 95 .81 .73 154 .81 .75 410 .80 .79 1,000 .70 .77
.1 (.2) 68 .82 .78 100 .81 .79 233 .80 .84 596 .80 .92
.5 (.2) 511 .80 .77 772 .80 .79 1,000 .34 .39 1,000 .04 .08
.2 (.5) 123 .81 .77 196 .80 .80 514 .80 .90 1,000 .54 .89
.1 (.5) 177 .80 .80 281 .80 .83 730 .80 .94 1,000 .30 .83

Dominant:
.2 (.2) 71 .81 .76 106 .81 .77 250 .80 .81 642 .80 .88
.5 (.5) 288 .80 .76 461 .80 .77 1,000 .66 .67 1,000 .09 .12
.1 (.2) 82 .81 .78 122 .81 .80 287 .80 .85 741 .80 .93
.5 (.2) 1,000 .55 .52 1,000 .26 .26 1,000 .04 .04 1,000 .00 .01
.2 (.5) 188 .81 .79 300 .80 .82 783 .80 .91 1,000 .26 .66
.1 (.5) 225 .80 .80 356 .80 .85 923 .80 .95 1,000 .19 .69

Multiplicative:
.2 (.2) 25 .84 .78 36 .82 .77 81 .80 .82 201 .80 .91
.5 (.5) 35 .82 .75 61 .82 .79 169 .80 .86 486 .80 .96
.1 (.2) 37 .82 .77 54 .81 .79 123 .81 .86 308 .80 .94
.5 (.2) 235 .80 .82 351 .80 .85 834 .80 .94 1,000 .27 .78
.2 (.5) 50 .82 .78 81 .80 .82 217 .80 .94 612 .80 1.00
.1 (.5) 86 .81 .80 137 .81 .85 357 .80 .96 999 .80 1.00

Recessive:
.2 (.2) 143 .81 .77 211 .80 .78 493 .80 .81 1,000 .62 .72
.5 (.5) 56 .82 .77 92 .81 .79 247 .80 .84 700 .80 .93
.1 (.2) 1,000 .64 .63 1,000 .33 .33 1,000 .05 .05 1,000 .01 .01
.5 (.2) 326 .81 .80 489 .80 .83 1,000 .69 .85 1,000 .13 .42
.2 (.5) 406 .80 .79 636 .80 .82 1,000 .44 .57 1,000 .06 .16
.1 (.5) 1,000 .06 .05 1,000 .02 .02 1,000 .00 .00 1,000 .00 .00

can easily compute exact P values for both tests. How-
ever, even if one is not interested in exact P values, one
can easily compute the exact critical values that should
be used, for families with two affected offspring, to
maintain the correct type I error rate. The key obser-
vation for these calculations is that, under the null hy-
pothesis, has a multinomial distribution with(n ,n ,n )22 21 20

parameters and , and then (p ,p ,p ) = (.25,.5,.25)2 2 1 0

DMLB is a simple function of this low-dimensional dis-
tribution. These null distributions can be used to com-
pute the exact critical values for both tests, some of

which are listed in table 2. The critical values depend
on the sample sizes, but there is no monotonous rela-
tionship between the number of heterozygous parents

and the critical values. Since interpolation betweenn2

the different values of is difficult, we are making avail-n2

able (contact the corresponding author) an SAS Institute
(1990) program that calculates the critical values for
both tests.

To compare the power of the two tests, we conducted
simulation studies for the genetic models studied by
Huang and Jiang (1999). We considered four genetic
models: additive, dominant, multiplicative, and reces-
sive. Let , , and be the penetrances of disease geno-f f f0 1 2

types dd, Dd, and DD, respectively, where D is the dis-
ease-causing allele. The relative genotypic risks (GRRs)
are defined as and . Like Huang andr = f /f r = f /f1 1 0 2 2 0

Jiang, we considered the following GRR values in the
power calculation: (1) for the additive model, ,r = 41

; (2) for the dominant model, , ; (3) forr = 7 r = 4 r = 42 1 2

the multiplicative model, , ; and (4) for ther = 4 r = 161 2

recessive model, , . We assumed that the bial-r = 1 r = 41 2

lelic marker and the disease loci are tightly linked (v =
), and we studied two marker-allele frequencies m (.20
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and .5) and three disease-allele frequencies p (.1, .2, and
.5). We looked at four different values (1, .80, .50, and
.30) of the normalized LD , whered = D/D D =p max

and . ForP(B D) � mp D = min [(1 � m) p,m (1 � p)]1 max

each genetic model, we determined the approximate
number of families N required to yield 80% power for
the TDT (Knapp 1999). If , then we simulatedN ! 1,000
100,000 replicates of N families; however, if N 1

, then each sample was limited to 1,000 families.1,000
Both tests were evaluated for the same replicates. For
each replicate, we determined the number of hetero-n2

zygous parents in the sample and then used it to compute
exact critical values for both tests. Since both tests have
a discrete distribution, we used a randomized test to
reject at an exact false-positive rate of .a = .0001

Table 3 lists the results of our simulation studies.
When the marker-allele frequency equals the disease-al-
lele frequency ( ), the TDT has more power thanm = p
the DMLB when . Even when , the DMLBd � .8 d = .5p p

is not consistently more powerful than the TDT.
When and , the TDT is more powerfulm ( p d = 1p

than the DMLB in all but one case (multiplicative, p =
, ). However, when , the DMLB is, “on.5 m = .2 d = .8p

average,” more powerful than the TDT. When ,d � .5p

the DMLB is usually more powerful than the TDT. How-
ever, in many cases in which the DMLB is significantly
more powerful than the TDT, the required sample sizes
are unrealistic (11,000 families) anyway. Therefore, nei-
ther test would be useful in such a setting.

We conclude that, even though tests that can adapt
to the degree of LD are a good idea, our simulations
have shown that, if the degree of LD is strong (d �p

), the DMLB usually is not more powerful than the.80
TDT. For a candidate-gene study in which the typed
marker affects the disease risk (i.e., and ),m = p d = 1p

the TDT is preferable to the DMLB. In their study,

Huang and Jiang (1999) showed that, when the LD is
very weak, the mean test has more power than the
DMLB. Therefore, the DMLB is most useful when there
is moderate LD between marker and disease locus. Un-
fortunately, in practice, the amount of LD is usually
unknown.

STEVE HORVATH, CHRISTINE WINDEMUTH,
AND MICHAEL KNAPP
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University of Bonn
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